SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Huang J, Guo X. Sensors (Basel) 2024; 24(11).

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24113398

PMID

38894189

PMCID

PMC11174491

Abstract

Global positioning systems often fall short in dense forest environments, leading to increasing demand for innovative localization methods. Notably, existing methods suffer from the following limitations: (1) traditional localization frameworks necessitate several fixed anchors to estimate the locations of targets, which is difficult to satisfy in complex and uncertain forestry environments; (2) the uncertain environment severely decreases the quality of signal measurements and thus the localization accuracy. To cope with these limitations, this paper proposes a new method of trajectory localization for forestry environments with the assistance of UAVs. Based on the multi-agent DRL technique, the topology of UAVs is optimized in real-time to cater for high-accuracy target localization. Then, with the aid of RSS measurements from UAVs to the target, the least squares algorithm is used to estimate the location, which is more flexible and reliable than existing localization systems. Furthermore, a shared replay memory is incorporated into the proposed multi-agent DRL system, which can effectively enhance learning performance and efficiency. Simulation results show that the proposed method can obtain a flexible and high-accuracy localization system with the aid of UAVs, which exhibits better robustness against high-dimensional heterogeneous data and is suitable for forestry environments.


Language: en

Keywords

equipment heterogeneity; least squares; multi-agent deep reinforcement learning; trajectory localization

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print