SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Guo M, Tian W, Li Y, Sui D. Sensors (Basel) 2024; 24(11).

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24113268

PMID

38894061

PMCID

PMC11174510

Abstract

Structural health monitoring for roads is an important task that supports inspection of transportation infrastructure. This paper explores deep learning techniques for crack detection in road images and proposes an automatic pixel-level semantic road crack image segmentation method based on a Swin transformer. This method employs Swin-T as the backbone network to extract feature information from crack images at various levels and utilizes the texture unit to extract the texture and edge characteristic information of cracks. The refinement attention module (RAM) and panoramic feature module (PFM) then merge these diverse features, ultimately refining the segmentation results. This method is called FetNet. We collect four public real-world datasets and conduct extensive experiments, comparing FetNet with various deep-learning methods. FetNet achieves the highest precision of 90.4%, a recall of 85.3%, an F1 score of 87.9%, and a mean intersection over union of 78.6% on the Crack500 dataset. The experimental results show that the FetNet approach surpasses other advanced models in terms of crack segmentation accuracy and exhibits excellent generalizability for use in complex scenes.


Language: en

Keywords

deep learning; attention mechanism; crack detection; segmentation; transformer

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print