SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shin S, Lee S, Davidson VL. Biochemistry 2009; 48(42): 10106-10112.

Copyright

(Copyright © 2009, American Chemical Society)

DOI

10.1021/bi901284e

PMID

19788236

PMCID

PMC2766301

Abstract

MauG is a diheme protein that catalyzes the six-electron oxidation of a biosynthetic precursor protein of methylamine dehydrogenase (PreMADH) with partially synthesized tryptophan tryptophylquinone (TTQ) to yield the mature protein with the functional protein-derived TTQ cofactor. The biosynthetic reaction proceeds via a relatively stable high valent bis-Fe(IV) intermediate. Oxidizing equivalents ([O]) for this reaction may be provided by either O(2) plus electrons from an external donor or H(2)O(2). The presence or absence of PreMADH has no influence on the reactivity of MauG with [O]; however, it is demonstrated that MauG is inactivated when supplied with [O] in the absence of PreMADH. The mechanism of inactivation appears to differ depending on the source of [O]. Repeated reaction of diferrous MauG with O(2) leads to loss of activity but not inactivation of heme, as judged by absorption spectroscopy and pyridine hemochrome assay. Repeated reaction of diferric MauG with H(2)O(2) leads to loss of activity and inactivation of heme, as well as some covalent cross-linking of MauG molecules. None of these deleterious effects with either source of [O] are observed when PreMADH is present to react with MauG. The radical scavenger hydroxyurea and small molecule mimics of the monohydroxylated Trp residue of PreMADH also reacted with bis-Fe(IV) MauG and afforded protection against inactivation. These results demonstrate that while O(2) and H(2)O(2) readily react with MauG in the absence of PreMADH, the presence of this substrate is necessary to prevent suicide inactivation of MauG after formation of the bis-Fe(IV) intermediate.


Language: en

Keywords

Bacterial Proteins; Heme-Binding Proteins; Hemeproteins; Hydrogen Peroxide; Kinetics; Oxidation-Reduction; Oxidoreductases Acting on CH-NH Group Donors; Oxygen; Paracoccus denitrificans; Tryptophan

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print