SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kemper RA, Elfarra AA, Myers SR. Drug Metab. Dispos. 1998; 26(9): 914-920.

Copyright

(Copyright © 1998, American Society for Pharmacology and Experimental Therapeutics, etc.)

DOI

unavailable

PMID

9733671

Abstract

3-Butene-1,2-diol (BDD), a metabolite of 1,3-butadiene, is rapidly metabolized by B6C3F1 mice at doses ranging from 10 to 250 mg/kg. Calculation of plasma clearance suggested that the kinetics of BDD metabolism were dose-dependent. Clearance varied 5-fold in this dose range. Urinary excretion of BDD was also dose-dependent but did not exceed 5% of the administered dose. A small fraction of the dose (<1%) was excreted as glucuronide or sulfate conjugates. Benzylimidazole, a cytochrome P450 inhibitor, decreased the clearance of BDD (25 mg/kg) by 44%, whereas 4-methylpyrazole, an alcohol dehydrogenase and cytochrome P450 inhibitor, decreased BDD clearance by 82%. BDD administration (250 mg/kg) resulted in depletion of hepatic and renal nonprotein thiols, by 48 and 22%, respectively. Pretreatment of mice with 4-methylpyrazole provided partial protection against depletion of nonprotein thiols, whereas pretreatment with benzylimidazole was ineffective. Incubation of BDD with NADPH and mouse liver microsomes resulted in time-dependent inactivation of p-nitrophenol hydroxylase (PNPH) activity, a marker for cytochrome P450. Inclusion of glutathione, with or without glutathione peroxidase, did not attenuate the inactivation of PNPH, whereas deferoxamine, superoxide dismutase, catalase, and mannitol provided modest protection. These results are consistent with suicide inhibition of PNPH by BDD, with a minor role for reactive oxygen species in the loss of PNPH. Treatment of mice with BDD (250 mg/kg) inactivated hepatic microsomal PNPH activity by 50% after 60 min. These results suggest that BDD is extensively and rapidly metabolized in mice, and they provide evidence for the formation of reactive intermediates that could play a role in the toxicity of 1, 3-butadiene.


Language: en

Keywords

Alcohol Dehydrogenase; Animals; Antioxidants; Butadienes; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Gas Chromatography-Mass Spectrometry; Glycols; Male; Mice; Mice, Inbred Strains; Microsomes, Liver

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print