SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Livermore DM. Journal of Antimicrobial Chemotherapy 1993; 31 Suppl A: 9-21.

Copyright

(Copyright © 1993)

DOI

10.1093/jac/31.suppl_a.9

PMID

8449836

Abstract

Inhibitor combinations provide one strategy to overcome beta-lactamase-mediated resistance. Their success depends, obviously, on the inhibitor being able to bind and inactivate the beta-lactamase molecules. Clavulanate, sulbactam and tazobactam are irreversible inactivators of many beta-lactamases, forming covalent complexes which resist hydrolysis. 'Suicide' kinetics are seen with some, but not all, enzymes. All three compounds inactivate staphylococcal penicillinase, the chromosomal beta-lactamases of Proteus vulgaris and Bacteroides spp., and the Class IV beta-lactamases present in some klebsiellae. Tazobactam, but not the other compounds, has moderate activity against some Class I (AmpC) chromosomal beta-lactamases, notably that of Morganella morganii, but not that of Enterobacter cloacae. Both clavulanate and tazobactam are strong inhibitors of the widely distributed TEM and SHV plasmid-mediated beta-lactamases; sulbactam is a weaker inhibitor. Other factors, aside from the affinity of the inhibitor for the enzyme, co-determine the success or failure of inhibition. Potentiation is most readily achieved if little enzyme is produced, and if the organism is very permeable to the inhibitor. Thus, resistance to inhibitor combinations is rare in strains of Haemophilus influenzae and Neisseria gonorrhoeae that produce TEM-beta-lactamase, but is commoner in enterobacteria that produce this enzyme, since these are less permeable and sometimes manufacture very large amounts of enzyme. The partner beta-lactam agent is also important. Irrespective of the inhibitor used, piperacillin is easier to protect against TEM beta-lactamases and the M. morganii Class I enzyme than are ampicillin, amoxycillin or ticarcillin. This may relate to the lower affinity of piperacillin for these enzymes, or to its greater affinity for the bacterial penicillin-binding proteins. Finally, pH can affect the degree of inhibition achieved with sulphones for some beta-lactamases, notably TEM-1.


Language: en

Keywords

Animals; Anti-Bacterial Agents; beta-Lactamase Inhibitors; Drug Therapy, Combination; Humans; Penicillin Resistance

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print