SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lai T, Zhao H, Song Y, Wang L, Wang Y, He X. Small Methods 2024; ePub(ePub): ePub.

Copyright

(Copyright © 2024, John Wiley and Sons)

DOI

10.1002/smtd.202400029

PMID

38847564

Abstract

Lithium-ion batteries (LIBs) are extensively used everywhere today due to their prominent advantages. However, the safety issues of LIBs such as fire and explosion have been a serious concern. It is important to focus on the root causes of safety accidents in LIBs and the mechanisms of their development. This will enable the reasonable control of battery risk factors and the minimization of the probability of safety accidents. Especially, the chemical crosstalk between two electrodes and the internal short circuit (ISC) generated by various triggers are the main reasons for the abnormal rise in temperature, which eventually leads to thermal runaway (TR) and safety accidents. Herein, this review paper concentrates on the advances of the mechanism of TR in two main paths: chemical crosstalk and ISC. It analyses the origin of each type of path, illustrates the evolution of TR, and then outlines the progress of safety control strategies in recent years. Moreover, the review offers a forward-looking perspective on the evolution of safety technologies. This work aims to enhance the battery community's comprehension of TR behavior in LIBs by categorizing and examining the pathways induced by TR. This work will contribute to the effective reduction of safety accidents of LIBs.


Language: en

Keywords

chemical crosstalk; internal short circuit; lithiumā€ion battery; safety mechanism; thermal runaway

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print