SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gil-Jardiné C, Chenais G, Pradeau C, Tentillier E, Revel P, Combes X, Galinski M, Tellier É, Lagarde E. Scand. J. Trauma Resusc. Emerg. Med. 2021; 29(1): e55.

Copyright

(Copyright © 2021, Scandinavian Networking Group on Trauma and Emergency Management, Publisher Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s13049-021-00862-w

PMID

33789721

PMCID

PMC8011068

Abstract

OBJECTIVES: During periods such as the COVID-19 crisis, there is a need for responsive public health surveillance indicators in order to monitor both the epidemic growth and potential public health consequences of preventative measures such as lockdown. We assessed whether the automatic classification of the content of calls to emergency medical communication centers could provide relevant and responsive indicators.
METHODS: We retrieved all 796,209 free-text call reports from the emergency medical communication center of the Gironde department, France, between 2018 and 2020. We trained a natural language processing neural network model with a mixed unsupervised/supervised method to classify all reasons for calls in 2020. Validation and parameter adjustment were performed using a sample of 39,907 manually-coded free-text reports.
RESULTS: The number of daily calls for flu-like symptoms began to increase from February 21, 2020 and reached an unprecedented level by February 28, 2020 and peaked on March 14, 2020, 3 days before lockdown. It was strongly correlated with daily emergency room admissions, with a delay of 14 days. Calls for chest pain and stress and anxiety, peaked 12 days later. Calls for malaises with loss of consciousness, non-voluntary injuries and alcohol intoxications sharply decreased, starting one month before lockdown. No noticeable trends in relation to lockdown was found for other groups of reasons including gastroenteritis and abdominal pain, stroke, suicide and self-harm, pregnancy and delivery problems.
DISCUSSION: The first wave of the COVID-19 crisis came along with increased levels of stress and anxiety but no increase in alcohol intoxication and violence. As expected, call related to road traffic crashes sharply decreased. The sharp decrease in the number of calls for malaise was more surprising.
CONCLUSION: The content of calls to emergency medical communication centers is an efficient epidemiological surveillance data source that provides insights into the societal upheavals induced by a health crisis. The use of an automatic classification system using artificial intelligence makes it possible to free itself from the context that could influence a human coder, especially in a crisis situation. The COVID-19 crisis and/or lockdown induced deep modifications in the population health profile.


Language: en

Keywords

Humans; Adult; Female; Male; COVID-19; Self-Injurious Behavior; France; Public health; Emergency Service, Hospital; Natural Language Processing; Social Isolation; Public Health Surveillance; Stress, Psychological; Hotlines; Lockdown; SARS-CoV-2; Communicable Disease Control; Neural Networks, Computer; Emergency medical communication centers

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print