SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sarsam SM, Al-Samarraie H, Alzahrani AI, Mon CS, Shibghatullah AS. Int. J. Ment. Health Addiction 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s11469-022-00958-z

PMID

unavailable

Abstract

Despite the success of psychological and clinical methods, psychological studies revealed that the number of individuals exhibiting suicide ideation has highly increased in the recent decades. This study explored the potential of using certain sentimental features as a means for characterizing suicide. A total of 54,385 English-language tweets were collected and processed to extract suicide-related topics using the Latent Dirichlet Allocation (LDA) algorithm. Both suicidal polarity (positive, negative, and neutral) and emotions (anger, fear, sadness, and trust) were extracted via SentiStrength, time series, and NRC Affect Intensity Lexicon methods. The results showed that suicidal tweets were less associated with trust, anger, and positive sentiments. In contrast, fear, sadness, and negative sentiments were highly associated with suicidal statements. The prediction results using this approach showed 97.64% accuracy in detecting suicide ideation. The obtained results from analyzing suicide-related tweets hold a promising future for characterizing suicide ideation worldwide. © 2022, Crown.


Language: en

Keywords

Suicide ideation; Sentiment analysis; Twitter; Topic modeling

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print