SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Spearpoint M, Arnott M, Xie H, Gwynne S, Templeton A. Safety Sci. 2024; 175: e106515.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.ssci.2024.106515

PMID

unavailable

Abstract

Currently there are numerous emergency evacuation simulation tools with varying levels of sophistication and differing capabilities. It is expected that investigating the same scenarios using different tools might not give the same outcome. This paper illustrates how a microscopic agent-based modelling tool (Pathfinder) and a macroscopic flow-based modelling tool (Evacuationz) can be setup to investigate high-rise residential building evacuations in comparable ways by varying configuration parameters. Both tools represent individual agents with associated characteristics (e.g., walking speed and pre-evacuation delay). These are varied in the scenarios examined to stress-test the designs or explore the impact of design/procedural changes. The two tools differ in how they deal with the building geometry and therefore have different algorithms to manage evacuee movement. In this work, assumed performance parameters (e.g., travel speeds, spacing, etc.) have been calibrated to better align the conditions represented in the tools and the outcomes produced across the scenarios examined. This then allows the tools to function at their respective levels of sophistication and granularity (providing different perspectives on performance) but adopt a more equivalent performance baseline given the calibration effort. The use of two tools increased confidence in the predictions, and also allowed for an examination of a wider range of scenario conditions such as number of stairs, stair width, and building size, given the different computational expense associated with the tools.


Language: en

Keywords

Evacuation; High-rise residential buildings; Simulation; Stairs

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print