SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bai T, Luo J, Zhou S, Lu Y, Wang Y. Sensors (Basel) 2024; 24(8): e2650.

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24082650

PMID

38676267

Abstract

The rapid increase in the number of vehicles has led to increasing traffic congestion, traffic accidents, and motor vehicle crime rates. The management of various parking lots has also become increasingly challenging. Vehicle-type recognition technology can reduce the workload of humans in vehicle management operations. Therefore, the application of image technology for vehicle-type recognition is of great significance for integrated traffic management. In this paper, an improved faster region with convolutional neural network features (Faster R-CNN) model was proposed for vehicle-type recognition. Firstly, the output features of different convolution layers were combined to improve the recognition accuracy. Then, the average precision (AP) of the recognition model was improved through the contextual features of the original image and the object bounding box optimization strategy. Finally, the comparison experiment used the vehicle image dataset of three vehicle types, including cars, sports utility vehicles (SUVs), and vans. The experimental results show that the improved recognition model can effectively identify vehicle types in the images. The AP of the three vehicle types is 83.2%, 79.2%, and 78.4%, respectively, and the mean average precision (mAP) is 1.7% higher than that of the traditional Faster R-CNN model.


Language: en

Keywords

bounding box; contextual features; faster R-CNN; vehicle-type recognition

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print