SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhai CH, Xie LL. Acta Seismol. Sin. Engl. Ed. 2006; 19(3): 299-310.

Affiliation

School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

Copyright

(Copyright © 2006, Seismological Society of China, Publisher Holtzbrinck Springer Nature Publishing Group)

DOI

unavailable

PMID

unavailable

Abstract

The strength reduction factors are not only the key factors in determining seismic action for force-based seismic design, but also the key parameters to derive the inelastic response spectra for performance-based seismic design. In this paper, with a high quality ground motion database that includes a reasonable-sized set of records from China, a statistical study on the strength reduction factors is conducted and a new expression of strength reduction factors involving classification of design earthquake, which is an important concept to determine design spectra in Chinese seismic design code, is proposed. The expression of strength reduction factors can reflect the ground motion characteristics of China to a certain extent and is particularly suitable for Chinese seismic design. Then, the influence effects of site condition, classification of design earthquake, period of vibration, ductility level, earthquake magnitude and distance to fault on strength reduction factors are investigated. It is concluded that the effect of site condition on the strength reduction factors cannot be neglected, especially for the short-period structures of higher ductility. The classification of design earthquake also has an important effect on strength reduction factors and it may be unsuitable to use the existing expressions of strength reduction factors to the design spectra of current Chinese seismic code. The earthquake magnitude has no practical effect on strength reduction factors and if the near-fault records with forward directivity effect are not taken into consideration, the effect of distance to fault on strength reduction factors can also be neglected.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print