SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lui PW, Yeo BC, Lim WS. Int. J. Adv. Sci. Eng. Inf. Technol. 2023; 13(6): 2098-2104.

Copyright

(Copyright © 2023, INSIGHT ndonesian Society for Knowledge and Human Development)

DOI

10.18517/ijaseit.13.6.19045

PMID

unavailable

Abstract

Water wave monitoring is essential in collecting marine parameters for oceanography studies and early warning systems on security and safety, such as drowning detection, weather detection, and gas leakage from underwater pipeline detection, because these activities create different water wave patterns that can be further analyzed. The current wave detection methods, such as underwater pressure and resistive sensors, have lower durability as they require direct contact with the water. Monocular camera wave detection can detect the line where water waves propagate. However, a static platform is required to perform monitoring operations.

This research aims to develop a continuous capacitive sensor system that a buoy can implement for contactless water surface wave detection and to develop a water wave direction detection algorithm by Principal Component Analysis (PCA) calculation. Capacitive sensors arranged in a circular shape and a compass module are implemented inside the prototype buoy. Each capacitive sensor detects the realtime wave height change by changing the capacitance value. The capacitance values from all the capacitive sensors and the North of the compass sensor are sent to the embedded server for further computations. Processes carried out in the embedded server are initial calibration, centroid calculation, PCA calculations for water wave detection, and data visualization on the webpage. The prototype buoy with a capacitive sensor system and compass sensor developed can detect the four positions tested in the experiment with a mean square error of 38.42° and a mean absolute error of 5.85°


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print