SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Pennone J, Aguero NF, Martini DM, Mochizuki L, do Passo Suaide AA. PLoS One 2024; 19(4): e0296355.

Copyright

(Copyright © 2024, Public Library of Science)

DOI

10.1371/journal.pone.0296355

PMID

38625858

Abstract

The elderly population is growing rapidly in the world and falls are becoming a big problem for society. Currently, clinical assessments of gait and posture include functional evaluations, objective, and subjective scales. They are considered the gold standard to indicate optimal mobility and performance individually, but their sensitivity and specificity are not good enough to predict who is at higher risk of falling. An innovative approach for fall prediction is the machine learning. Machine learning is a computer-science area that uses statistics and optimization methods in a large amount of data to make outcome predictions. Thus, to assess the performance of machine learning algorithms in classify participants by age, number of falls and falls frequency based on features extracted from a public database of stabilometric assessments. 163 participants (116 women and 47 men) between 18 and 85 years old, 44.0 to 75.9 kg mass, 140.0 to 189.8 cm tall, and 17.2 to 31.9 kg/m2 body mass index. Six different machine learning algorithms were tested for this classification, which included Logistic Regression, Linear Discriminant Analysis, K Nearest-neighbours, Decision Tree Classifier, Gaussian Naive Bayes and C-Support Vector Classification. The machine learning algorithms were applied in this database which has sociocultural, demographic, and health status information about participants. All algorithm models were able to classify the participants into young or old, but our main goal was not achieved, no model identified participants at high risk of falling. Our conclusion corroborates other works in the biomechanics field, arguing the static posturography, probably due to the low daily living activities specificity, does not have the desired effects in predicting the risk of falling. Further studies should focus on dynamic posturography to assess the risk of falls.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print