SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rossi D, Pascale A, Mascolo A, Guarnaccia C. Sensors (Basel) 2024; 24(7): e2275.

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24072275

PMID

38610486

Abstract

Road traffic noise is a severe environmental hazard, to which a growing number of dwellers are exposed in urban areas. The possibility to accurately assess traffic noise levels in a given area is thus, nowadays, quite important and, on many occasions, compelled by law. Such a procedure can be performed by measurements or by applying predictive Road Traffic Noise Models (RTNMs). Although the first approach is generally preferred, on-field measurement cannot always be easily conducted. RTNMs, on the contrary, use input information (amount of passing vehicles, category, speed, among others), usually collected by sensors, to provide an estimation of noise levels in a specific area. Several RTNMs have been implemented by different national institutions, adapting them to the local traffic conditions. However, the employment of RTNMs proves challenging due to both the lack of input data and the inherent complexity of the models (often composed of a Noise Emission Model-NEM and a sound propagation model). Therefore, this work aims to propose a methodology that allows an easy application of RTNMs, despite the availability of measured data for calibration. Four different NEMs were coupled with a sound propagation model, allowing the computation of equivalent continuous sound pressure levels on a dataset (composed of traffic flows, speeds, and source-receiver distance) randomly generated. Then, a Multilinear Regressive technique was applied to obtain manageable formulas for the models' application. The goodness of the procedure was evaluated on a set of long-term traffic and noise data collected in a French site through several sensors, such as sound level meters, car counters, and speed detectors.

RESULTS show that the estimations provided by formulas coming from the Multilinear Regressions are quite close to field measurements (MAE between 1.60 and 2.64 dB(A)), confirming that the resulting models could be employed to forecast noise levels by integrating them into a network of traffic sensors.


Language: en

Keywords

multilinear regressive approach; noise emission models; Road Traffic Noise Models

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print