SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chai Y, Wang S, Zhang Z. Sensors (Basel) 2024; 24(7): e2116.

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24072116

PMID

38610330

Abstract

Lane detection plays a pivotal role in the successful implementation of Advanced Driver Assistance Systems (ADASs), which are essential for detecting the road's lane markings and determining the vehicle's position, thereby influencing subsequent decision making. However, current deep learning-based lane detection methods encounter challenges. Firstly, the on-board hardware limitations necessitate an exceptionally fast prediction speed for the lane detection method. Secondly, improvements are required for effective lane detection in complex scenarios. This paper addresses these issues by enhancing the row-anchor-based lane detection method. The Transformer encoder-decoder structure is leveraged as the row classification enhances the model's capability to extract global features and detect lane lines in intricate environments. The Feature-aligned Pyramid Network (FaPN) structure serves as an auxiliary branch, complemented by a novel structural loss with expectation loss, further refining the method's accuracy. The experimental results demonstrate our method's commendable accuracy and real-time performance, achieving a rapid prediction speed of 129 FPS (the single prediction time of the model on RTX3080 is 15.72 ms) and a 96.16% accuracy on the Tusimple dataset-a 3.32% improvement compared to the baseline method.


Language: en

Keywords

expectation loss; lane detection; row-anchor-based method; structural loss; transformer

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print