SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yang S, Abdel-Aty M, Islam Z, Wang D. Accid. Anal. Prev. 2024; 201: e107568.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.aap.2024.107568

PMID

38581772

Abstract

To facilitate efficient transportation, I-4 Express is constructed separately from general use lanes in metropolitan area to improve mobility and reduce congestion. As this new infrastructure would undoubtedly change the traffic network, there is a need for more understanding of its potential safety impact. Unfortunately, many advanced real-time crash prediction models encounter an important challenge in their applicability due to their demand for a substantial volume of data for direct modeling. To tackle this challenge, we proposed a simple yet effective approach - anomaly detection learning, which formulates model as an anomaly detection problem, solves it through normality feature recognition, and predicts crashes by identifying deviations from the normal state. The proposed approach demonstrates significant improvement in the Area Under the Curve (AUC), sensitivity, and False Alarm Rate (FAR). When juxtaposed with the prevalent direct classification paradigm, our proposed anomaly detection learning (ADL) consistently outperforms in AUC (with an increase of up to 45%), sensitivity (experiencing up to a 45% increase), and FAR (reducing by up to 0.53). The most performance gain is attained through the combination of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) in an ensemble, resulting in a 0.78 AUC, 0.79 sensitivity, and a 0.22 false alarm rate. Furthermore, we analyzed model features with a game-theoretic approach illustrating the most correlated features for accurate prediction, revealing the attention of advanced convolution neural networks to occupancy features. This provided crucial insights into improving crash precaution, the findings from which not only benefit private stakeholders but also extend a promising opportunity for governmental intervention on the express lane. This work could promote express lane with more efficient resource allocation, real-time traffic management optimization, and high-risk area prioritization.


Language: en

Keywords

Anomaly Detection; Deep Learning; Managed Lanes; Mobility; Real-time Crash Prediction; Traffic Safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print