SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dargahi Nobari K, Bertram T. Sci. Data 2024; 11(1): e327.

Copyright

(Copyright © 2024, Nature Publishing Group)

DOI

10.1038/s41597-024-03137-y

PMID

38555295

Abstract

In driver monitoring various data types are collected from drivers and used for interpreting, modeling, and predicting driver behavior, and designing interactions. Aim of this contribution is to introduce manD 1.0, a multimodal dataset that can be used as a benchmark for driver monitoring in the context of automated driving. manD is the short form of human dimension in automated driving. manD 1.0 refers to a dataset that contains data from multiple driver monitoring sensors collected from 50 participants, gender-balanced, aged between 21 to 65 years. They drove through five different driving scenarios in a static driving simulator under controlled laboratory conditions. The automation level (SAE International, Standard J3016) ranged from SAE L0 (no automation, manual) to SAE L3 (conditional automation, temporal). To capture data reflecting various mental and physical states of the subjects, the scenarios encompassed a range of distinct driving events and conditions. manD 1.0 includes environmental data such as traffic and weather conditions, vehicle data like the SAE level and driving parameters, and driver state that covers physiology, body movements, activities, gaze, and facial information, all synchronized. This dataset supports applications like data-driven modeling, prediction of driver reactions, crafting of interaction strategies, and research into motion sickness.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print