SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ren Q, Xu M, Yan X. Accid. Anal. Prev. 2024; 200: e107562.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.aap.2024.107562

PMID

38554471

Abstract

Single-vehicle rollover crashes have been acknowledged as a predominant highway crash type resulting in serious casualties. To investigate the heterogeneous impact of factors determining different injury severity levels in single-vehicle rollover crashes, the random parameters logit model with unobserved heterogeneity in means and variances was employed in this paper. A five-year dataset on single-vehicle rollover crashes, gathered in California from January 1, 2013, to December 31, 2017, was utilized. Driver injury severities that were determined to be outcome variables include no injury, minor injury, and severe injury. Characteristics pertaining to the crash, driver, temporal, vehicle, roadway, and environment were acknowledged as potential determinants. The results showed that the gender indicator specified to minor injury was consistently identified as a significant random parameter in four years' models and the joint five-year model, excluding the 2016 crash model where the night indicator associated with no injury was observed to produce the random effect. Additionally, two series of likelihood ratio tests were conducted to assess the year-to-year and aggregate-to-component temporal stability of model estimation results. Marginal effects of explanatory variables were also calculated and compared to analyze the temporal stability and interpret the results. The findings revealed an overall temporal instability of model specifications across individual years, while there is no significant aggregate-to-component variation. Injury severities were observed to be stably affected by several variables, including improper turn indicator, under the influence of alcohol indicator, old driver indicator, seatbelt indicator, insurance indicator, and airbag indicator. Furthermore, the year-to-year and aggregate-to-component shift was quantified and characterized by calculating the differences in probabilities between within-sample observations and out-of-sample predictions. The overall results imply that continuing to expand and refine the model to incorporate more comprehensive datasets can result in more robust and stable injury severity prediction, thus benefiting in mitigating the associated driver injury severity.


Language: en

Keywords

Driver injury severity; Out-of-sample prediction; Random parameters logit model; Single-vehicle rollover crashes; Temporal stability; Unobserved heterogeneity in means and variances

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print