SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dong L, Xie X, Lu J, Feng L, Zhang L. Sensors (Basel) 2024; 24(6).

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24061845

PMID

38544109

PMCID

PMC10975367

Abstract

To address traffic flow fluctuations caused by changes in traffic signal control schemes on tidal lanes and maintain smooth traffic operations, this paper proposes a method for controlling traffic signal transitions on tidal lanes. Firstly, the proposed method includes designing an intersection overlap phase scheme based on the traffic flow conflict matrix in the tidal lane scenario and a fast and smooth transition method for key intersections based on the flow ratio. The aim of the control is to equalize average queue lengths and minimize average vehicle delays for different flow directions at the intersection. This study also analyses various tidal lane scenarios based on the different opening states of the tidal lanes at related intersections. The transitions of phase offsets are emphasized after a comprehensive analysis of transition time and smoothing characteristics. In addition, this paper proposes a coordinated method for tidal lanes to optimize the phase offset at arterial intersections for smooth and rapid transitions. The method uses Deep Q-Learning, a reinforcement learning algorithm for optimal action selection (OSA), to develop an adaptive traffic signal transition control and enhance its efficiency. Finally, a simulation experiment using a traffic control interface is presented to validate the proposed approach. This study shows that this method leads to smoother and faster traffic signal transitions across different tidal lane scenarios compared to the conventional method. Implementing this solution can benefit intersection groups by reducing traffic delays, improving traffic efficiency, and decreasing air pollution caused by congestion.


Language: en

Keywords

a reinforcement learning algorithm; Deep Q-Learning; fast and smoothing transition method; opening state of the tidal lane; traffic signal transition control

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print