SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen P, Ni H, Wang L, Yu G, Sun J. Accid. Anal. Prev. 2024; 199: e107530.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.aap.2024.107530

PMID

38437756

Abstract

Merging areas serve as the potential bottlenecks for continuous traffic flow on freeways. Traffic incidents in freeway merging areas are closely related to decision-making errors of human drivers, for which the autonomous vehicles (AVs) technologies are expected to help enhance the safety performance. However, evaluating the safety impact of AVs is challenging in practice due to the lack of real-world driving and incident data. Despite the increasing number of simulation-based AV studies, most relied on single traffic/vehicle driving simulators, which exhibit limitations such as inaccurate description of AV behavior using pre-defined driving models, limited testing modules, and a lack of high-fidelity traffic scenarios. To this end, this study addresses these challenges by customizing different types of car-following models for AVs on freeway and developing a software-in-the-loop co-simulation platform for safety performance evaluation. Specifically, the environmental perception module is integrated in PreScan, the decision-making and control model for AVs is designed by Matlab, and the traffic flow environment is established by Vissim. Such a co-simulation platform is supposed to be able to reproduce the mixed traffic with AVs to a large extent. By taking a real freeway merging scenario as an example, comprehensive experiments were conducted by introducing a single AV and multiple AVs on the mainline of freeway, respectively. The single AV experiment investigated the performance of different car-following models microscopically in the case of merging conflict. The safety and comfort of AVs were examined in terms of TTC and jerk, respectively. The multiple AVs experiment examined the safety impact of AVs on mixed traffic of freeway merging areas macroscopically using the developed risk assessment model. The results show that AVs could bring significant benefits to freeway safety, as traffic conflicts and risks are substantially reduced with incremental market penetration rates.


Language: en

Keywords

Autonomous vehicles; Car-following; Co-simulation platform; Merging area; Safety evaluation; Surrogate safety measures

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print