SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Papadopoulos A, Sersemis A, Spanos G, Lalas A, Liaskos C, Votis K, Tzovaras D. Transp. Res. Proc. 2024; 78: 16-23.

Copyright

(Copyright © 2024, Elsevier Publications)

DOI

10.1016/j.trpro.2024.02.003

PMID

unavailable

Abstract

Autonomous Vehicles (AVs) will be the future of automotive including both the Public and the Private Transportation. One of the major concerns of the corresponding research community is the safety of the AVs. Considering this, a lightweight accident detection model for autonomous fleets is presented, utilizing only GPS data. The proposed accident detection model combines well-known statistical and machine learning techniques such as data normalization, PCA transformation, and DBSCAN clustering. In order to validate the proposed methodology simulated data were utilized exploiting well-established techniques, such as Dead-Reckoning, accident speed profiles, and pre-crash acceleration models. The preliminary results highlighted that the proposed methodology managed to achieve its accurate accident detection purpose presenting accuracy higher than 98%.


Language: en

Keywords

Accident Detection; Autonomous vehicles; Clustering; GPS data; Machine Learning

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print