SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cui W, Sharma A, Liao YTT. J. Fire Sci. 2023; 41(1-2): 32-50.

Copyright

(Copyright © 2023, SAGE Publishing)

DOI

10.1177/07349041231153145

PMID

unavailable

Abstract

Flame spread over discrete solid fuels has been of key research interest in the past few decades. Most studies considered an array of discrete fuels separated by air gaps or heat-insulating inert materials. The effects of heat loss due to the discrete configuration are not well understood. The present study aims to bridge this knowledge gap. A series of experiments are performed using a vertical array of thin discrete fuels separated by heat-absorbing inert materials of different thicknesses. For comparisons, experiments are also performed using discrete fuels separated by air gaps and using continuous fuel. The flame base spread rate is found to be generally higher in discrete fuel than in continuous fuel configurations, due to a reduced fuel load per unit length. It is also found that the air and inert gaps have opposite effects on the solid burning rates. The air gaps break the no-slip boundary, allowing the laterally entrained buoyancy flow (normal to the sample surface) to push the flame closer to the samples. This leads to an enhanced heat flux on the sample surface and an increased solid burning rate. On the other hand, the inert materials retain the flow boundary profile and act as a heat sink during flame spread, thereby reducing the solid burning rate. As the inert thickness increases, flame spread rate and solid burning rate decrease. Based on these observations, an existing model for flame spread rate is updated by incorporating the heat-absorbing effects of the gaps. The correlation is validated using the experimental data.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print