SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lee H, Cho JK, Park J, Lee H, Fond G, Boyer L, Kim HJ, Park S, Cho W, Lee H, Lee J, Yon DK. J. Med. Internet. Res. 2024; 26: e51473.

Copyright

(Copyright © 2024, Centre for Global eHealth Innovation)

DOI

10.2196/51473

PMID

38354043

Abstract

BACKGROUND: Given the additional risk of suicide-related behaviors in adolescents with allergic rhinitis (AR), it is important to use the growing field of machine learning (ML) to evaluate this risk.

OBJECTIVE: This study aims to evaluate the validity and usefulness of an ML model for predicting suicide risk in patients with AR.

METHODS: We used data from 2 independent survey studies, Korea Youth Risk Behavior Web-based Survey (KYRBS; n=299,468) for the original data set and Korea National Health and Nutrition Examination Survey (KNHANES; n=833) for the external validation data set, to predict suicide risks of AR in adolescents aged 13 to 18 years, with 3.45% (10,341/299,468) and 1.4% (12/833) of the patients attempting suicide in the KYRBS and KNHANES studies, respectively. The outcome of interest was the suicide attempt risks. We selected various ML-based models with hyperparameter tuning in the discovery and performed an area under the receiver operating characteristic curve (AUROC) analysis in the train, test, and external validation data.

RESULTS: The study data set included 299,468 (KYRBS; original data set) and 833 (KNHANES; external validation data set) patients with AR recruited between 2005 and 2022. The best-performing ML model was the random forest model with a mean AUROC of 84.12% (95% CI 83.98%-84.27%) in the original data set. Applying this result to the external validation data set revealed the best performance among the models, with an AUROC of 89.87% (sensitivity 83.33%, specificity 82.58%, accuracy 82.59%, and balanced accuracy 82.96%). While looking at feature importance, the 5 most important features in predicting suicide attempts in adolescent patients with AR are depression, stress status, academic achievement, age, and alcohol consumption.

CONCLUSIONS: This study emphasizes the potential of ML models in predicting suicide risks in patients with AR, encouraging further application of these models in other conditions to enhance adolescent health and decrease suicide rates.


Language: en

Keywords

*Rhinitis, Allergic; *Suicide; Adolescent; allergic rhinitis; Humans; machine learning; Machine Learning; Nutrition Surveys; prediction; random forest; Suicidal Ideation; suicidality

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print