SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sun H, Wang H, Yang M, Reniers G. Safety Sci. 2024; 171: e106375.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.ssci.2023.106375

PMID

unavailable

Abstract

To maintain continuous production, chemical plant operators may ignore faults or handle faults online rather than shutting down process systems. However, interaction and interdependence links between components in a digitalized process system are substantial. Thus, faults will be propagated to downstream nodes, potentially leading to risk accumulation and major accidents. However, limited attention has been paid to this type of risk. To model the risk accumulation process, a dynamic risk assessment method is proposed by integrating the system-theoretic accident model and process approach (STAMP) and the cascading failure propagation model (CFPM). Firstly, STAMP is used to model and analyze the system safety of a process system. Two CFPMs are then proposed to measure risk accumulation under two different engineering situations. The proposed method is applied to the Chevron Richmond refinery crude unit and its associated upstream process. The results show that the proposed approach can effectively quantify the process of risk accumulation. This method can generate a real-time dynamic risk profile to support auxiliary decision-making.


Language: en

Keywords

Cascading failure propagation model (CFPM); Fault propagation; Risk accumulation; STAMP

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print