SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Guo M, Janson B, Peng Y. Accid. Anal. Prev. 2024; 198: e107493.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.aap.2024.107493

PMID

38335890

Abstract

Pedestrians represent a population of vulnerable road users who are directly exposed to complex traffic conditions, thereby increasing their risk of injury or fatality. This study first constructed a multidimensional indicator to quantify pedestrian exposure, considering factors such as Point of Interest (POI) attributes, POI intensity, traffic volume, and pedestrian walkability. Following risk interpolation and feature engineering, a comprehensive data source for risk prediction was formed. Finally, based on risk factors, the VT-NET deep learning network model was proposed, integrating the algorithmic characteristics of the VGG16 deep convolutional neural network and the Transformer deep learning network. The model involved training non-temporal features and temporal features separately. The training dataset incorporated features such as weather conditions, exposure intensity, socioeconomic factors, and the built environment. By employing different training methods for different types of causative feature variables, the VT-NET model analyzed changes in risk features and separately trained temporal and non-temporal risk variables. It was used to generate spatiotemporal grid-level predictions of crash risk across four spatiotemporal scales. The performance of the VT-NET model was assessed, revealing its efficacy in predicting pedestrian crash risks across the study area. The results indicated that areas with concentrated crash risks are primarily located in the city center and persist for several hours. These high-risk areas dissipate during the late night and early morning hours. High-risk areas were also found to cluster in the city center; this clustering behavior was more prominent during weekends compared to weekdays and coincided with commercial zones, public spaces, and educational and medical facilities.


Language: en

Keywords

Crash risk prediction; Deep learning; Pedestrian exposure; Pedestrian traffic crash; Trip characteristics

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print