SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yao H, Wu Y, Liu S, Liu Y, Xie H. Math. Biosci. Eng. 2024; 21(1): 903-923.

Copyright

(Copyright © 2024, American Institute of Mathematical Sciences)

DOI

10.3934/mbe.2024038

PMID

38303448

Abstract

A Generative Adversarial Network (GAN) based asphalt pavement crack image generation method was proposed to improve the dataset size of the road images. Five open-source road crack datasets were leveraged to construct an image dataset, which contained two labels - transverse cracks and longitudinal cracks. The constructed dataset was used to facilitate crack detection and classification research by providing a diverse collection of labeled crack images derived from multiple public sources. The network structure of fully connected, convolutional and attention mechanisms based on the Conditional Generative Adversarial Network (CGAN) was used in this project. The purpose of this study was to train a generative model on selected categories of input pavement crack images and generate realistic crack images of those categories. We aim to tune the parameters of the GAN and optimize hyperparameters to improve the realism possibility of generated images. It also explored the generated images with different sizes and evaluated the performance of networks with different architectures. In particular, we analyzed the structural characteristics of conditional GAN.

RESULTS demonstrated that the Self-Attention Generative Adversarial Networks (SAGAN) model, which combines self-attention mechanisms with CGAN, can effectively address challenges related to limited crack image data and the inability to selectively generate images from specific categories. By conditioning the generator on category information, the SAGAN model was able to generate high-quality images while focusing on the target categories. Overall, the self-attention and conditional aspects of the SAGAN framework helped improve the generation of realistic pavement crack images.


Language: en

Keywords

deep learning; Generative Adversarial Network (GAN); image generation; pavement engineering

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print