SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dzeng RJ, Watanabe K, Hsueh HH, Fu CK. Sensors (Basel) 2024; 24(2).

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24020672

PMID

38276363

PMCID

PMC10818701

Abstract

Fall accidents in the construction industry have been studied over several decades and identified as a common hazard and the leading cause of fatalities. Inertial sensors have recently been used to detect accidents of workers in construction sites, such as falls or trips. IMU-based systems for detecting fall-related accidents have been developed and have yielded satisfactory accuracy in laboratory settings. Nevertheless, the existing systems fail to uphold consistent accuracy and produce a significant number of false alarms when deployed in real-world settings, primarily due to the intricate nature of the working environments and the behaviors of the workers. In this research, the authors redesign the aforementioned laboratory experiment to target situations that are prone to false alarms based on the feedback obtained from workers in real construction sites. In addition, a new algorithm based on recurrent neural networks was developed to reduce the frequencies of various types of false alarms. The proposed model outperforms the existing benchmark model (i.e., hierarchical threshold model) with higher sensitivities and fewer false alarms in detecting stumble (100% sensitivity vs. 40%) and fall (95% sensitivity vs. 65%) events. However, the model did not outperform the hierarchical model in detecting coma events in terms of sensitivity (70% vs. 100%), but it did generate fewer false alarms (5 false alarms vs. 13).


Language: en

Keywords

accident; sensor; fall detection; accelerometer; construction worker

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print