SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Deva Hema D, Kumar KA. Int. J. Intell. Transp. Syst. Res. 2023; 21(1): 26-35.

Copyright

(Copyright © 2023, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s13177-022-00332-2

PMID

unavailable

Abstract

Importance of efficient short term traffic state prediction has been increased for accurate traffic planning in the domain of an Intelligent Transportation System. Modeling variety of traffic patterns and unanticipated traffic flow changes with time dependencies are the primary problems in traffic prediction. Existing approaches suffer to capture non-linearity of traffic flow complex features efficiently. Therefore, an intelligent decision support system for traffic state prediction has been proposed to boost the efficiency of the traffic state prediction model. Spatio-temporal based optimized Gated Recurrent Unit (GRU) has been developed to implement an intelligent decision support system for traffic state classification. Initially spatial features are learnt using the Convolutional Neural Network (CNN) model. Traffic state is predicted using GRU where the hyper parameters of GRU degrade the performance of traffic state prediction. Therefore, GRU is integrated with Grasshopper Optimization Algorithm (GOA) for the regulation of the hyper parameters in GRU. The CNN-GRU-GOA model was evaluated with CNN-LSTM, LSTM and Stacked auto encoder. The CNN-GRU-GOA achieves 96.8% of accuracy in PeMs dataset and 96.7% of accuracy in china traffic dataset which reveals that performance of traffic state prediction has been enhanced drastically by CNN-GRU-GOA with less computational cost.


Language: en

Keywords

CNN; Deep learning; GRU; Hyper parameter optimization; Traffic states

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print