SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Trevissoi F, Franchetti G, Fais P, Gabbin A, Giovannini E, Martini N, Sech M, Todesco G, Pizzi M, De Conti G, Giraudo C, Viel G, Cecchetto G. Leg. Med. (Elsevier) 2024; 67: e102394.

Copyright

(Copyright © 2024, Japanese Society of Legal Medicine, Publisher Elsevier Publishing)

DOI

10.1016/j.legalmed.2024.102394

PMID

38217997

Abstract

Motor-vehicle accidents often result in lower limb injuries with biosseous fractures. The present study aimed at comparing multi-slice computed tomography (MS-CT), micro-computed tomography (micro-CT) and external fractography for the analyses of experimentally produced biosseus leg fractures. Briefly, 48 human legs amputated for medical reasons were defleshed and then experimentally fractured using a 3-point dynamic bending model (70,6 J of impact energy at the middle of the anterior surface of the tibia) producing 38 biosseous and 10 mono-osseous fractures with a total of 86 fractured bones. External fractography detected 63 (73,2%) "butterfly" fractures (24 (27,9%) complete and 39 (45,3%) incomplete), 14 (16,3%) "oblique" fractures, 6 (7,0%) "comminuted" fractures and 3 (3,5%) "transverse" fractures. Forty-three (43) of the 48 included legs displayed at least one butterfly fracture located at the tibia or fibula. MS-CT correctly detected and classified 16 complete and 20 incomplete butterfly fractures, failing to properly classify 27 fractures; 19 of these misclassifications led to an interpretative error on the trauma direction (i.e., 16 incomplete butterfly fractures classified as oblique fractures and 3 incomplete butterfly fractures classified as transverse). Micro-CT correctly detected and classified 22 complete and 37 incomplete butterfly fractures, failing to properly classify 4 fractures; two of these misclassifications led to an interpretative error on the trauma direction (i.e., two incomplete butterfly fractures classified as oblique fractures). Although further studies evaluating a wider number of fractures and fracture patterns are required to drive any definitive conclusions, this preliminary experimental investigation showed that MS-CT and micro-CT represent useful tools for reconstructing the morphology of leg fractures and could be crucial for trauma analysis in the forensic context. MS-CT could be used as a screening tool, micro-CT as second level analysis and external/internal fractography as third level, confirmatory analysis.


Language: en

Keywords

Forensic pathology; Computed tomography; Butterfly fracture; Car crashes; Forensic radiology; Fractography; Micro-CT

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print