SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kang YR, Chen Y, Tian C. Sci. Rep. 2023; 13(1): e22966.

Copyright

(Copyright © 2023, Nature Publishing Group)

DOI

10.1038/s41598-023-49365-x

PMID

38151542

Abstract

To explore the mechanism of the end-to-end transmission delay of the communication network on the collaborative driving process for traffic flow in the vehicle-to-vehicle communication environment, based on the idea of the car-following model, this paper introduces characteristic parameters characterizing the end-to-end transmission delay of the network into Newell's following model and proposes a CD and OV model by considering the time delay characteristics of the collaborative driving process from information transmission to control decision and then to physical execution. To determine the cooperative driving system's stability criterion, the stability analysis of the new model is examined. By using the reductive perturbation approach, the spatiotemporal evolution mechanism of the traffic flow around the critical stability point under the influence of various transmission delays is analyzed. The resulting modified Korteweg-de Vries (mKdV) equations and density wave solutions are derived. The results show that the end-to-end transmission delay of the network has a significant shock effect on the stability of the vehicle-vehicle cooperative driving system, and the stability of the traffic flow and the ability to suppress traffic congestion becomes worse with the increase in the end-to-end transmission delay.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print