SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Huang Z, Si R, Wen G, Jin S, Xue S. Fire (Basel) 2023; 6(12): e468.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/fire6120468

PMID

unavailable

Abstract

Passive explosion-isolation facilities in underground coal mines, such as explosion-proof water troughs and bags, face challenges aligned with current trends in intelligent and unmanned technologies, due to restricted applicability and structural features. Grounded in the propagation laws and disaster mechanisms of gas explosions, the device in this paper enables accurate identification of explosion flames and pressure information. Utilizing a high-speed processor for rapid logical processing enables judgments within 1 ms. Graded activation of the operating mechanism is enabled by the device. The tunnel flame-proof device's flame-extinguishing agent has a continuous action time of 6075 ms. Experiments on the active flame-proof effect of a 100 m3 gas explosion were conducted using a cross-sectional 7.2 m2 large-tunnel test system. With a dosage of 5.6 kg/m2, the powder flame-extinguishing agent completely extinguished the explosion flame within a 20 m range behind the explosion isolator. Numerical calculations unveiled the gas-phase chemical suppression mechanism of the powder flame-extinguishing agent NH4H2PO4 in suppressing methane explosions. Building upon these findings, application technology for active flame-proofing was developed, offering technical support for intelligent prevention and control of gas explosions in underground coal mines.


Language: en

Keywords

active flame-proofing; application technology; explosion pressure; flame velocity; gas explosion; powder flame suppressor

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print