SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Azmeri Khan S, Yasmin S, Mazharul Haque M. Anal. Meth. Accid. Res. 2023; 40: e100300.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.amar.2023.100300

PMID

unavailable

Abstract

Run-off-road crashes are one of the most significant causes of road deaths worldwide. Given such significant safety concerns, a number of earlier studies examined the critical factors contributing towards run-off-road crash severity outcomes, mostly by using the information compiled in the official crash database. However, the official crash databases are less likely to have detailed information on driver behavior (errors/expectations) and roadway environment (roadway geometry and roadside attributes). This study aims to investigate the effects of design consistency measures on run-off-road crash severity mechanisms by applying a random parameters hierarchical ordered Probit model. This study contributes towards existing safety literature by demonstrating a complementary approach to capturing the effects of driver behavior and heterogeneity in roadway environment on run-off-road crash severity outcome through the composite measures of design consistency indices and cosmopolite measures of roadside hazard type variables. Specifically, 17 different functional forms of design consistency indices are developed to capture the behavioral factors from the road-geometric changes in developing run-off-road crash severity models. Further, in examining the effect of different types of the roadside environment on run-off-road crash severity outcomes, seven roadside hazard type variables are generated as a composite function of roadside object type and clear zone (lateral distance to roadside object). The empirical analysis of this study involves a two-step modelling approach - in the first step, the decision tree algorithm is applied to identify the higher-order interaction among independent variables, and in the second step, crash severity models are developed by employing several econometric approaches. The hybrid models are estimated by employing four econometric frameworks, which include Ordered Probit, Hierarchical Ordered Probit, Random Parameters Ordered Probit, and Random parameters Hierarchical Ordered Probit models. The run-off-road crash severity models are estimated by using crash data collected from the State of Queensland, Australia, for the years 2015 through 2019. Overall, this study reveals the importance of considering the interaction of drivers' behavior, road geometry, and roadside attributes along with other independent variables in developing run-off-road crash severity models.


Language: en

Keywords

Crash severity; Design consistency; Driver behavior; Hierarchical Ordered Probit Model; Run-off-road crash

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print