SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Haque MR, Islam MR, Choma E, Hayes S, McMahon S, Sazonov E, Shen X. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2023; 2023: 1-4.

Copyright

(Copyright © 2023, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/EMBC40787.2023.10340165

PMID

38083186

Abstract

This paper introduces a novel wearable shoe sensor named the Smart Lacelock Sensor. The sensor can be securely attached to the top of a shoe with laces and incorporates a loadcell to measure the force applied by the shoelace, providing valuable information related to ankle movement and foot loading. As the first step towards the automated balance assessment, this paper investigates the correlations between various levels of physical performance measured by the wearable Smart Lacelock Sensor and the SPPB clinical method in community-living older persons. 19 adults (age 76.84 ± 3.45 years), including those with and without recent fall history and SPPB score ranging from 4 to 12, participated in the study. The Smart Lacelock Sensor was attached to both shoes of each participant by skilled research staff, who then led them through the SPPB evaluation. The data obtained from the Smart Lacelock Sensors after the SPPB assessment were used to evaluate the deviation between the SPPB scores assigned by the research staff and the signals generated by the sensors for various participants.

RESULTS demonstrate that the standard deviation of the Smart Lacelock Sensor's loadcell response (both feet) for the side-by-side balance testing is significantly correlated (R(2) = 0.68) with the SPPB score, demonstrating the capability of the Smart Lacelock Sensor in balance assessment.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print