SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yoganandan N, Baisden J, Vedantam A, Banerjee A. J. Eng. Sci. Med. Diagn. Ther. 2024; 7(3): e031005.

Copyright

(Copyright © 2024, American Society of Mechanical Engineers)

DOI

10.1115/1.4063648

PMID

38059268

PMCID

PMC10697077

Abstract

Advancements in automated vehicles may position the occupant in postures different from the current standard posture. It may affect human tolerance responses. The objective of this study was to determine the lateral bending tolerance of the head-cervical spine with initial head rotation posture using loads at the occipital condyles and lower neck and describe injuries. Using a custom loading device, head-cervical spine complexes from human cadavers were prepared with load cells at the ends. Lateral bending loads were applied to prerotated specimens at 1.5 m/s. At the occipital condyles, peak axial and antero-posterior and medial-lateral shear forces were: 316-954 N, 176-254 N, and 327-508 N, and coronal, sagittal, and axial moments were: 27-38 N·m, 21-38 N·m, and 9.7-19.8 N·m, respectively. At the lower neck, peak axial and shear forces were: 677-1004 N, 115-227 N, and 178-350 N, and coronal, sagittal, and axial moments were: 30-39 N·m, 7.6-21.3 N·m, and 5.7-13.4 N·m, respectively. Ipsilateral atlas lateral mass fractures occurred in four out of five specimens with varying joint diastasis and capsular ligament involvements. Acknowledging that the study used a small sample size, initial tolerances at the occipital condyles and lower neck were estimated using survival analysis. Injury patterns with posture variations are discussed.


Language: en

Keywords

bending moment; cervical spine; injury risk curve; multiplanar loading; upper neck loads

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print