SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dai N, Guan X, Lu C, Zhang K, Xu S, Lei IM, Li G, Zhong Q, Fang P, Zhong J. ACS Nano 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, American Chemical Society)

DOI

10.1021/acsnano.3c05507

PMID

38051212

Abstract

Noncontact human-machine interactions (HMIs) provide a hygienic and intelligent approach to communicate between humans and machines. However, current noncontact HMIs are generally hampered by the interaction distance, and they lack the adaptability to environmental interference such as high humidity conditions. Here, we explore a self-powered electret-based noncontact sensor (ENS) with moisture-resisting ability and ultrawide sensing range exceeding 2.5 m. A megascopic air-bubble structure is designed to enhance charge-storage stability and charge-recovery ability of the ENS based on the heterocharge-synergy effect in electrets. Besides, multilayer electret films are introduced to strengthen the electric field by utilizing the electrostatic field superposition effect. Thanks to the above improved performances of the ENS, we demonstrate various noncontact HMI applications in harsh environments, including noncontact appliances, a moving trajectory and accidental fall tracking system, and a real-time machine learning-assisted gesture recognition system with accuracy as high as 99.21%. This research expands the way for noncontact sensor design and may further broaden applications in noncontact HMIs.


Language: en

Keywords

Harsh environment; Human−machine interactions; Noncontact sensor; Self-powered; Ultrawide sensing range

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print