SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen C, Yuan G, Zhou H, Ma Y, Ma Y. Math. Biosci. Eng. 2023; 20(11): 19300-19319.

Copyright

(Copyright © 2023, American Institute of Mathematical Sciences)

DOI

10.3934/mbe.2023853

PMID

38052601

Abstract

Fire incidents near power transmission lines pose significant safety hazards to the regular operation of the power system. Therefore, achieving fast and accurate smoke detection around power transmission lines is crucial. Due to the complexity and variability of smoke scenarios, existing smoke detection models suffer from low detection accuracy and slow detection speed. This paper proposes an improved model for smoke detection in high-voltage power transmission lines based on the improved YOLOv7-tiny. First, we construct a dataset for smoke detection in high-voltage power transmission lines. Due to the limited number of real samples, we employ a particle system to randomly generate smoke and composite it into randomly selected real scenes, effectively expanding the dataset with high quality. Next, we introduce multiple parameter-free attention modules into the YOLOv7-tiny model and replace regular convolutions in the Neck of the model with Spd-Conv (Space-to-depth Conv) to improve detection accuracy and speed. Finally, we utilize the synthesized smoke dataset as the source domain for model transfer learning. We pre-train the improved model and fine-tune it on a dataset consisting of real scenarios. Experimental results demonstrate that the proposed improved YOLOv7-tiny model achieves a 2.61% increase in mean Average Precision (mAP) for smoke detection on power transmission lines compared to the original model. The precision is improved by 2.26%, and the recall is improved by 7.25%. Compared to other object detection models, the smoke detection proposed in this paper achieves high detection accuracy and speed. Our model also improved detection accuracy on the already publicly available wildfire smoke dataset Figlib (Fire Ignition Library).


Language: en

Keywords

attention mechanism; deep learning; smoke detection; transmission line

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print