SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li Y, Wu Z, Shen J, Zhang Q. Opt. Express 2023; 31(24): 40803-40823.

Copyright

(Copyright © 2023, Optical Society of America)

DOI

10.1364/OE.506343

PMID

38041372

Abstract

Achieving real-time and high-accuracy 3D reconstruction of dynamic scenes is a fundamental challenge in many fields, including online monitoring, augmented reality, and so on. On one hand, traditional methods, such as Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP), are struggling to balance measuring efficiency and accuracy. On the other hand, deep learning-based approaches, which offer the potential for improved accuracy, are hindered by large parameter amounts and complex structures less amenable to real-time requirements. To solve this problem, we proposed a network architecture search (NAS)-based method for real-time processing and 3D measurement of dynamic scenes with rate equivalent to single-shot. A NAS-optimized lightweight neural network was designed for efficient phase demodulation, while an improved dual-frequency strategy was employed coordinately for flexible absolute phase unwrapping. The experiment results demonstrate that our method can effectively perform 3D reconstruction with a reconstruction speed of 58fps, and realize high-accuracy measurement of dynamic scenes based on deep learning for what we believe to be the first time with the average RMS error of about 0.08 mm.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print