SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Guo Z, Guo F, Zhang Y, He J, Li G, Yang Y, Zhang X. Heliyon 2023; 9(11): e21542.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.heliyon.2023.e21542

PMID

38027891

PMCID

PMC10660045

Abstract

Landslide susceptibility assessment is considered the first step in landslide risk assessment, but current studies mostly rely on GIS platforms or other software for data preprocessing. The modeling process is relatively complicated and multi-models cannot be integrated. With regard to this issue, this study develops a Python system for automatic assessment of regional landslide susceptibility. The Python system implements landslide susceptibility assessment through three modules: geographic data processing, machine learning modeling and result evaluation analysis. For geographic data processing, ten landslide influencing factors can be used to construct an evaluation factor dataset and reclassify the thematic maps based on the frequency ratio method. Four built-in machine learning models (logistic regression (LR), multi-layer perceptron (MLP), support vector machine (SVM) and extreme gradient boosting (XGBoost)) are integrated into the system to complete susceptibility modeling and calculation. Additionally, receiver operating characteristic (ROC) curves can be automatically generated to evaluate the accuracy. The system was then applied into Lantian County in Shaanxi Province as a demonstration example. The results show that the areas under the ROC curve (AUC) of the four models are 0.838 (LR)、0.882 (SVM)、0.809 (MLP) and 0.812 (XGBoost), respectively, indicating that the SVM model was the most suitable model for landslide susceptibility assessment in Lantian County in the Loess Plateau of China. The system has now been made open source on Github, which can effectively improve the efficiency of regional landslide susceptibility assessment, especially provide tools for data processing and modeling for non-professionals.


Language: en

Keywords

GIS; Landslide susceptibility assessment; Loess plateau; Machine learning models; Python

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print