SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wu J, Cheng L, Chu S, Song Y. Ocean Eng. 2024; 291: e116403.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.oceaneng.2023.116403

PMID

unavailable

Abstract

The prevalence of maritime transportation and operations is increasing, leading to a gradual increase in drowning accidents at sea. In the context of maritime search and rescue (SAR), it is essential to develop effective search plans to improve the survival probability of persons-in-water (PIWs). However, conventional SAR search plans typically use predetermined patterns to ensure complete coverage of the search area, disregarding the varying probabilities associated with the PIW distribution. To address this issue, this study has proposed a maritime SAR vessel coverage path planning framework (SARCPPF) suitable for multiple PIWs. This framework comprises three modules, namely, drift trajectory prediction, the establishment of a multilevel search area environment model, and coverage search. First, sea area-scale drift trajectory prediction models were employed using the random particle simulation method to forecast drift trajectories. A hierarchical probability environment map model was established to guide the SAR of multiple SAR units. Subsequently, we integrated deep reinforcement learning with a reward function that encompasses multiple variables to guide the navigation behavior of ship agents. We developed a coverage path planning algorithm aimed at maximizing the success rates within a limited timeframe. The experimental results have demonstrated that our model enables vessel agents to prioritize high-probability regions while avoiding repeated coverage.

Keywords

Coverage path planning; Deep reinforcement learning; Drift trajectory prediction; Maritime search and rescue; Persons-in-water

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print