SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hetzer SM, O'Connell C, Lallo V, Robson M, Evanson NK. Exp. Neurol. 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.expneurol.2023.114613

PMID

37995952

Abstract

Over 3 million people in the United States live with long-term disability because of a traumatic brain injury (TBI). The purpose of this study was to characterize and compare two different animal models of TBI (blunt head trauma and blast TBI) to determine common and divergent characteristics of these models. With recent literature reviews noting the prevalence of visual system injury in animal models of TBI, coupled with clinical estimates of 50-75% of all TBI cases, we decided to assess commonalities, if they existed, through visual system injury. A unilateral (left directed) blast and repeat blast model injury with coup-contra-coup injury patterns were compared to a midline blunt injury. Injuries were induced in adult male mice to observe and quantify visual deficits. Retinal ganglion cell loss and axonal degeneration in the optic tract, superior colliculus, and lateral geniculate nuclei were examined to trace injury outcomes throughout major vision-associated areas. Optokinetic response, immunohistochemistry, and western blots were analyzed. Where a single blunt injury produces significant visual deficits a single blast injury appears to have less severe visual consequences. Visual deficits after repeat blasts are similar to a single blast. Single blast injury induces contralateral damage to the right optic chiasm and tract whereas bilateral injury follows a single blunt TBI. Repeat blast injuries are required to see degeneration patterns in downstream regions similar to the damage seen in a single blunt injury. This finding is further supported by amyloid precursor protein (APP) staining in injured cohorts. Blunt injured groups present with staining 1.2 mm ahead of the optic nerve, indicating axonal breakage closer to the optic chiasm. In blast groups, APP was identifiable in a bilateral pattern only in the geniculate nucleus. Evidence for unilateral neuronal degeneration in brain tissue with bilateral axonal ruptures are pivotal discoveries in this model differentiation. Analysis of the two injury models suggests that there is a significant difference in the histological outcomes dependent on injury type, though visual system injury is likely present in more cases than are currently diagnosed clinically.


Language: en

Keywords

Traumatic brain injury; Blast injury; Closed-head injury; Neuro ophthalmology; Neurodegeneration; Optic neuropathy; Visual neuroscience

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print