SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu J, Das S, Khan MN. Accid. Anal. Prev. 2023; 194: e107375.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.aap.2023.107375

PMID

37956504

Abstract

Understanding the relationship between social disparities and traffic crash frequency is essential for long-term transportation planning and policymaking. Few studies have systemically examined the influence of socioeconomic and infrastructure-related disparities in macro-level traffic crash frequency. This study provides a framework to spatially examine the relationships between crash rates and demographic and socioeconomic characteristics, as well as roadway infrastructure and traffic characteristics at the Census Block Groups (CBGs) level. Spatial autocorrelation analysis was first performed on the residual of the Ordinary Least Squares (OLS) model to identify whether non-stationarity exists. Then, the Geographically Weighted Regression (GWR) model and the Multiscale Geographically Weighted Regression (MGWR) model were applied to assess the impacts of these factors on crash rates spatially and statistically. Our findings indicate that MGWR outperforms both OLS and GWR in uncovering the spatial relationships between contributing factors and both fatal and injury (FI) crashes as well as property damage only (PDO) crashes. A thorough examination of local coefficient maps highlighted six pivotal variables that significantly influenced a majority of CBGs. Improving infrastructure, including pedestrian pathways and public transit facilities, in low-income areas can offer significant benefits. These findings and recommendations can inform the development of effective strategies for reducing crashes and guide the appropriate selection of modeling techniques for macro-level crash analysis.


Language: en

Keywords

Traffic safety; Spatial analysis; Geographically weighted regression; Social disparities

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print