SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Huang C, Zhou J, Gu S, Pan P, Hou Y, Xiong H, Tang T, Wu Q, Wu J. ACS Appl. Mater. Interfaces 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, American Chemical Society)

DOI

10.1021/acsami.3c12648

PMID

37934067

Abstract

Mouthguards are used to prevent craniomaxillofacial injuries when collisions happen during contact and high-speed sports. However, poor compliance with mouthguard wear in athletes is attributed to discomfort because of its thickness and hardness. These drawbacks significantly restrict their protective performance for oral tissues and applications during contact sports; as a result, the incidence of craniomaxillofacial injuries increases. In this study, non-Newton material is introduced into mouthguard material and then a mouthguard with shear-stiffening behavior is fabricated, which is named the shear-stiffening mouthguard (SSM). Compared with commercial mouthguard materials (Erkoflex and Erkoloc-pro), SSMs show remarkable enhancement of shock absorption ability with an approximately 60% reduction in peak force relative to commercial materials and approximately 3-fold extensive buffer time. Moreover, Young's modulus of SSMs (average 0.48 MPa) is extremely lower compared to commercial materials (22.88 MPa for Erkoflex and 26.71 MPa for Erkoloc-pro). This manifests that SSMs have not only excellent shock absorption ability but also softness perception. Moreover, SSMs show biocompatibility in vitro. In conclusion, this work provides a platform to develop a new type of thin and soft mouthguard with a shear-stiffening effect and broadens the horizon in protecting oral tissues with shear-stiffening materials.


Language: en

Keywords

biocompatibility; mouthguard; shear-stiffening effect; shock absorption ability; softness

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print