SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mitchell C, Cronin J. Health Sci. Rep. 2023; 6(10): e1660.

Copyright

(Copyright © 2023, John Wiley and Sons)

DOI

10.1002/hsr2.1660

PMID

37900093

PMCID

PMC10600336

Abstract

BACKGROUND AND AIMS: There is a need for high utility and portability, and cost-effective technologies that are suitable for assessing dual-task gait after experiencing a concussion. Current technologies utilized such as 3D motion capture and force plates are too complex and expensive for most practitioners. The aim of this study was to quantify the variability of dual-task walking gait parameters using in-shoe inertial sensors in nonconcussed individuals.

METHODS: This was a randomized within-subject repeated measures design conducted within a sports laboratory. Twenty healthy, uninjured, nonconcussed participants were recruited for this study. Gait variables of interest were measured across three 2-min continuous walking protocols (12 m, 30 m, 1 min out and back) while performing a cognitive task of counting backward in sevens from a randomly generated number between 300 and 500. Testing was completed over three occasions separated by 7 days, for a total of nine walking trials. Participants completed the testing protocols in a randomized, individual order. The primary outcome was to determine the variability of dual-task walking gait parameters using in-shoe inertial sensors in nonconcussed individuals across three protocols.

RESULTS: Three to four participants were allocated to each randomized protocol order. Regarding the absolute consistency (coefficient of variation [CV]) between testing occasions, no gait measure was found to have variability above 6.5%. Relative consistency (intraclass correlation coefficient [ICC]) was acceptable (>0.70) in 95% of the variables of interest, with only three variables < 0.70. Similar variability was found across the three testing protocols.

CONCLUSION: In-shoe inertial sensors provide a viable option for monitoring gait parameters. This technology is also reliable across different testing distances, thus offering various testing options for practitioners. Further research needs to be conducted to examine the variability with concussed subjects.


Language: en

Keywords

concussion; inertial measurement unit; gait

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print