SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Seong J, Kim HS, Jung HJ. Sensors (Basel) 2023; 23(20).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23208371

PMID

37896464

PMCID

PMC10610944

Abstract

According to data from the Ministry of Employment and Labor in Korea, a significant portion of fatal accidents on construction sites occur due to collisions between construction workers and equipment, with many of these collisions being attributed to worker negligence. This study introduces a method for accurately localizing construction equipment and workers on-site, delineating areas prone to collisions as 'a danger area of a collision', and defining collision risk states. Utilizing advanced deep learning models which specialize in object detection, video footage obtained from strategically placed closed-circuit television (CCTV) cameras across the construction site is analyzed. The positions of each detected object are determined using transformation or homography matrices representing the conversion relationship between a sufficiently flat reference plane and image coordinates. Additionally, 'a danger area of a collision' is proposed for evaluating equipment collision risk based on the moving equipment's speed, and the validity of this area is verified. Through this, the paper presents a system designed to preemptively identify potential collision risks, particularly when workers are located within the 'danger area of a collision', thereby mitigating accident risks on construction sites.


Language: en

Keywords

CCTV; collision warning; construction management; deep-learning-based object detection; safety in construction site

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print