SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang XY, Zhang Y, Gao Y, Zhao H. Chem Commun (Camb) 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, Royal Society of Chemistry)

DOI

10.1039/d3cc04217k

PMID

37888484

Abstract

Due to its high theoretical capacity and low anode potential advantages, lithium is becoming the ideal high-capacity anode of next generation batteries. Nevertheless, the satisfactory long-term cyclability of lithium metal batteries is still not achieved. Inspired by the intrinsic soft nature of the lithium metal, we have developed a simple room temperature solid-state deformation route to overcome the lithium dendrite issue, and the cycle life of the deformation treated lithium anode is 5 times that of the untreated lithium anode. It is demonstrated that microscale lithium grains are divided into nanoscale lithium grains by directional friction forces of solid-state deformation. The lithium grain boundaries are lithiophilic active sites towards Li ions, which regulate homogeneous deposition of Li ions to form a thin and stable SEI film, eventually overcoming the lithium dendrite issue and enhancing the cyclability of lithium batteries. Overcoming the challenges in conventional tedious chemical routes to grow high-density grain boundary active sites for catalysis, the room temperature solid-state deformation route will pave a new road to grow high-density grain boundaries for fuel cells and metal-based batteries.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print