SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Guo C, Wang Z, Liu T, Lin B, Zhu C, Huang Z, Liu N. ACS Omega 2023; 8(40): 37202-37212.

Copyright

(Copyright © 2023, American Chemical Society)

DOI

10.1021/acsomega.3c04849

PMID

37841184

PMCID

PMC10568686

Abstract

During the underground mining process, various coal seams with different bedding structures are often encountered. The presence of bedding structures is one of the primary factors that influence the strength and deformation characteristics of the coal seam and then affect gas extraction and gas disaster prevention. However, there is still a lack of mechanical properties of coal rock with structural anisotropy influenced by bedding structures. In this study, numerical models were established by using the particle flow code method to simulate coal specimens containing bedding with varying inclination angles. The results demonstrate the impact of the bedding inclination angle on the mechanical properties, crack propagation patterns, and the temporal and spatial evolution of the stress field in coal specimens with bedding during the loading process. Furthermore, three crack initiation patterns were investigated for coal specimens with different bedding angles. Additionally, the quantitative relationship between the mechanical properties and the fractal dimension was analyzed. The numerical simulation results were effectively validated through laboratory tests.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print