SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kocuvan P, Hrastič A, Kareska A, Gams M. Sensors (Basel) 2023; 23(19).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23198294

PMID

37837123

PMCID

PMC10575458

Abstract

Falls by the elderly pose considerable health hazards, leading not only to physical harm but a number of other related problems. A timely alert about a deteriorating gait, as an indication of an impending fall, can assist in fall prevention. In this investigation, a comprehensive comparative analysis was conducted between a commercially available mobile phone system and two wristband systems: one commercially available and another representing a novel approach. Each system was equipped with a singular three-axis accelerometer. The walk suggestive of a potential fall was induced by special glasses worn by the participants. The same standard machine-learning techniques were employed for the classification with all three systems based on a single three-axis accelerometer, yielding a best average accuracy of 86%, a specificity of 88%, and a sensitivity of 86% via the support vector machine (SVM) method using a wristband. A smartphone, on the other hand, achieved a best average accuracy of 73% also with an SVM using only a three-axis accelerometer sensor. The significance analysis of the mean accuracy, sensitivity, and specificity between the innovative wristband and the smartphone yielded a p-value of 0.000. Furthermore, the study applied unsupervised and semi-supervised learning methods, incorporating principal component analysis and t-distributed stochastic neighbor embedding. To sum up, both wristbands demonstrated the usability of wearable sensors in the early detection and mitigation of falls in the elderly, outperforming the smartphone.


Language: en

Keywords

elderly people; accelerometer features; ambient intelligence; gait abnormalities; PCA; personalized; predicting falls; supervised learning; t-SNE; three-axis accelerometer

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print