SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Expósito I, Chin I, García Sánchez M, Cuinas I, Verhaevert J. Sensors (Basel) 2023; 23(19).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23198113

PMID

37836944

PMCID

PMC10575454

Abstract

Radars in the W-band are being integrated into car bumpers for functionalities such as adaptive cruise control, collision avoidance, or lane-keeping. These Advanced Driving Assistance Systems (ADAS) enhance traffic security in coordination with Intelligent Transport Systems (ITS). This paper analyzes the attenuation effect that car bumpers cause on the signals passing through them. Using the free-space transmission technique inside an anechoic chamber, we measured the attenuation caused by car bumper samples with different material compositions. The results show level drops lower than 1.25 dB in all the samples analyzed. The signal attenuation triggered by the bumpers decreases with the frequency, with differences ranging from 0.55 dB to 0.86 dB when comparing the end frequencies within the radar band. Among the analyzed bumper samples, those with a thicker varnish layer or with talc in the composition seem to attenuate more. We also provide an estimation of the measurement uncertainty for the validation of the obtained results. Uncertainty analysis yields values below 0.21 dB with a 95% coverage interval in the measured frequency band. When comparing the measured value with its uncertainty, i.e., the relative uncertainty, the lower the frequency in the measured band, the more accurate the measurements seem to be.


Language: en

Keywords

ADAS technologies; attenuation measurements; automotive radar; ITS technologies; material characterization; radio propagation; wireless

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print