SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sun J, Qi W, Huang Y, Xu C, Yang W. Fire (Basel) 2023; 6(6): e228.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/fire6060228

PMID

unavailable

Abstract

Wildfire is a sudden and highly destructive natural disaster that poses significant challenges in terms of response and rescue efforts. Influenced by factors such as climate, combustible materials, and ignition sources, wildfires have been increasingly occurring worldwide on an annual basis. In recent years, researchers have shown growing interest in studying wildfires, leading to a substantial body of related research. These studies encompass various topics, including wildfire prediction and forecasting, the analysis of spatial and temporal patterns, the assessment of ecological impacts, the simulation of wildfire behavior, the identification of influencing factors, the development of risk assessment models, techniques for managing combustible materials, decision-making technologies for firefighting, and fire-retardant methods. Understanding the factors that affect wildfire spread behavior, employing simulation methods, and conducting risk assessments are vital for effective wildfire prevention, disaster mitigation, and emergency response. Consequently, it is imperative to comprehensively review and explore further research in this field. This article primarily focuses on elucidating and discussing wildfire spread behavior as a key aspect. It summarizes the driving factors of wildfire spread behavior and introduces a wildfire spread behavior simulation software and its main applications based on these factors. Furthermore, it presents the research progress in wildfire risk assessment based on wildfire spread behavior factors and simulation, and provides an overview of various methods used for wildfire risk assessment. Finally, the article proposes several prospects for future research on wildfire spread: strengthening the dynamic monitoring of wildfires and utilizing comprehensive data from multiple sources, further exploring the differential effects of key factors on wildfire spread, investigating differences in driving factors, improving wildfire models in China, developing applicable software, and conducting accurate and scientific assessments of wildfire risks to protect ecological resources.


Language: en

Keywords

driving factors; risk assessment; simulation; wildfire; wildfire spread

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print