SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bakidou A, Caragounis EC, Andersson Hagiwara M, Jonsson A, Sjöqvist BA, Candefjord S. BMC Med. Inform. Decis. Mak. 2023; 23(1): e206.

Copyright

(Copyright © 2023, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s12911-023-02290-5

PMID

37814288

Abstract

BACKGROUND: Providing optimal care for trauma, the leading cause of death for young adults, remains a challenge e.g., due to field triage limitations in assessing a patient's condition and deciding on transport destination. Data-driven On Scene Injury Severity Prediction (OSISP) models for motor vehicle crashes have shown potential for providing real-time decision support. The objective of this study is therefore to evaluate if an Artificial Intelligence (AI) based clinical decision support system can identify severely injured trauma patients in the prehospital setting.

METHODS: The Swedish Trauma Registry was used to train and validate five models - Logistic Regression, Random Forest, XGBoost, Support Vector Machine and Artificial Neural Network - in a stratified 10-fold cross validation setting and hold-out analysis. The models performed binary classification of the New Injury Severity Score and were evaluated using accuracy metrics, area under the receiver operating characteristic curve (AUC) and Precision-Recall curve (AUCPR), and under- and overtriage rates.

RESULTS: There were 75,602 registrations between 2013-2020 and 47,357 (62.6%) remained after eligibility criteria were applied. Models were based on 21 predictors, including injury location. From the clinical outcome, about 40% of patients were undertriaged and 46% were overtriaged. Models demonstrated potential for improved triaging and yielded AUC between 0.80-0.89 and AUCPR between 0.43-0.62.

CONCLUSIONS: AI based OSISP models have potential to provide support during assessment of injury severity. The findings may be used for developing tools to complement field triage protocols, with potential to improve prehospital trauma care and thereby reduce morbidity and mortality for a large patient population.


Language: en

Keywords

Trauma; Prehospital care; Artificial Intelligence (AI); Clinical Decision Support System (CDSS); Field triage; On Scene Injury Severity Prediction (OSISP)

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print